“A inteligência artificial é a elucidação do processo de aprendizado humano, a quantificação do processo de pensamento humano, a explicação do comportamento humano e a compreensão do que torna a inteligência possível. É o passo final do homem para se entender, e espero participar dessa nova, mas promissora ciência.” – Kai-Fu Lee (1983), autor do livro “AI Super-Powers: China, Silicon Valley and the New World Order” (New York Times bestseller), lançado em 2018.
“Inteligência Artificial (definição): A teoria e o desenvolvimento de sistemas computacionais capazes de realizar tarefas que normalmente requerem inteligência humana, como percepção visual, reconhecimento de fala, tomada de decisão e tradução entre idiomas.” – Dicionário Oxford
Esta série de artigos que eu tenho postado sobre o uso da IA em Negócios fornece a líderes, gestores e profissionais de negócios uma base de conhecimentos que facilita o entendimento do tema e os prepara para uma relação mais próxima com os profissionais de tecnologia e realização de projetos em suas empresas.
Como liderar sua empresa na era da IA
A tecnologia de IA (Inteligência Artificial) agora está pronta para transformar todos os setores, assim como a eletricidade fez 100 anos atrás. Espera-se que até 2030, forneça um crescimento econômico estimado em 13 trilhões de dólares. Embora já tenha criado um tremendo valor em empresas líderes em tecnologia, como Google, Baidu, Microsoft e Facebook, muitas das ondas adicionais de criação de valor estão indo além do setor de software.
Este artigo trata-se de um pequeno guia de orientação para transformação da empresa utilizando o potencial da Inteligência Artificial (IA). Trata-se da tradução e adaptação do texto original que é baseado em insights obtidos de Andrew Ng, da empresa Landing AI, ao liderar equipes do Google Brain e o Baidu AI Group, onde ele desempenhou papéis de liderança na transformação do Google e do Baidu em grandes empresas de IA.
Observação: O guia é direcionado à grandes empresas, mas que pode ser adaptado para uso em empresas menores, com o uso de plataformas de computação cognitiva, inteligência artificial e aprendizado de máquina automatizado (AutoML) como serviço em nuvem – o que requer menos infraestrutura e profissionais para começar.
Veja as recomendações em 5 passos:
1. Execute projetos piloto para ganhar impulso
É mais importante que seus primeiros projetos de IA sejam bem-sucedidos do que os projetos de IA mais valiosos. Eles devem ser significativos o suficiente para que os sucessos iniciais ajudem sua empresa a se familiarizar com a IA e também convença outras pessoas da empresa a investir em outros projetos de IA; eles não devem ser tão pequenos que outros considerem triviais. O importante é fazer o volante girar para que sua equipe de IA possa ganhar impulso.
Características sugeridas para os primeiros projetos de IA:
- Idealmente, deve ser possível para uma equipe de IA nova ou externa (que pode não ter profundo conhecimento de domínio sobre sua empresa) fazer parceria com suas equipes internas (que têm profundo conhecimento de domínio) e criar soluções de IA que comecem a mostrar tração em 6-12 meses.
- O projeto deve ser tecnicamente viável. Muitas empresas ainda estão iniciando projetos que são impossíveis usando a tecnologia de IA de hoje; ter engenheiros de IA confiáveis fazendo a devida diligência em um projeto antes do início aumentará sua convicção em sua viabilidade.
- Tenha um objetivo claramente definido e mensurável que crie valor comercial.
Sucesso em um primeiro projeto piloto, trará a confiança necessária para projetos maiores e mais complexos.
2. Crie uma equipe interna de IA
Embora parceiros terceirizados com profundo conhecimento técnico em IA possam ajudá-lo a ganhar esse impulso inicial mais rapidamente, a longo prazo será mais eficiente executar alguns projetos com uma equipe interna de IA. Além disso, você desejará manter alguns projetos dentro da empresa para construir uma vantagem competitiva mais exclusiva.
É importante ter a adesão da liderança para construir essa equipe interna. Durante a ascensão da internet, a contratação de um CIO foi um ponto de virada para muitas empresas terem uma estratégia coesa de uso da internet. Em contraste, as empresas que realizaram muitos experimentos independentes – desde marketing digital até experimentos de ciência de dados e lançamentos de novos sites – não conseguiriam alavancar os recursos da Internet se esses pequenos projetos-piloto não conseguissem escalar para transformar o resto da empresa.
Na era da IA, um momento chave para muitas empresas será novamente a formação de uma equipe de IA centralizada que possa ajudar toda a empresa. Essa equipe de IA pode ficar sob a função de CTO, CIO ou CDO (Chief Data Officer ou Chief Digital Officer) se tiver o conjunto de habilidades certo. Também poderia ser liderado por um CAIO (Chief AI Officer) dedicado. As principais responsabilidades da unidade de IA são:
- Construir uma capacidade de IA para dar suporte a toda a empresa.
- Executar uma sequência inicial de projetos multifuncionais para dar suporte a diferentes divisões/unidades de negócios com projetos de IA. Depois de concluir os projetos iniciais, configurar processos repetidos para entregar continuamente uma sequência de projetos valiosos de IA.
- Desenvolver padrões consistentes para recrutamento e retenção.
- Desenvolver plataformas para toda a empresa que sejam úteis para várias divisões/unidades de negócios e que provavelmente não sejam desenvolvidas por uma divisão individual. Por exemplo, considere trabalhar com o CTO/CIO/CDO para desenvolver padrões de armazenamento de dados unificados.
Muitas empresas são organizadas com várias unidades de negócios subordinadas ao CEO. Com uma nova unidade de IA, você será capaz de integrar o talento de IA às diferentes divisões para conduzir projetos multifuncionais.
Novas descrições de cargos e novas organizações de equipe surgirão. Uma maneira de organizar o trabalho de equipes é em funções como engenheiro de aprendizado de máquina, engenheiro de dados, cientista de dados e gerente de produto de IA, o que é diferente da era pré-IA. Um bom líder de IA poderá aconselhá-lo sobre a configuração dos processos corretos.
Atualmente, há uma guerra por talentos de IA e, infelizmente, a maioria das empresas terá dificuldade em contratar um estudante ou graduado em doutorado em IA de Stanford, por exemplo. Como a guerra de talentos é basicamente de soma zero no curto prazo, trabalhar com um parceiro de recrutamento que pode ajudá-lo a construir uma equipe de IA.
3. Forneça amplo treinamento de IA
Nenhuma empresa hoje tem talento interno de IA suficiente. Enquanto as reportagens da mídia sobre altos salários de IA são exageradas (os números citados na imprensa tendem a ser discrepantes), é difícil encontrar talento em IA. Felizmente, com o aumento do conteúdo digital, incluindo MOOCs (cursos online abertos e massivos), como Coursera, e-books e vídeos do YouTube, é mais econômico do que nunca treinar muitos funcionários em novas habilidades, como IA. O CLO inteligente (Chief Learning Officer) sabe que seu trabalho é selecionar, em vez de criar conteúdo, e então estabelecer processos para garantir que os funcionários concluam as experiências de aprendizado.
Se você tiver orçamento para contratar consultores, o conteúdo presencial deve complementar o conteúdo online. Isso é chamado de pedagogia da “sala de aula invertida” que resulta em aprendizado mais rápido e uma experiência de aprendizado mais agradável. Contratar alguns especialistas em IA para fornecer algum conteúdo pessoalmente também pode ajudar a motivar seus funcionários a aprender essas técnicas de IA.
A IA proverá novos empregos diferentes. Você deve dar a todos o conhecimento de que precisam para se adaptar às suas novas funções na era da IA. A consulta com um especialista permitirá que você desenvolva um currículo personalizado para sua equipe. No entanto, um plano de educação inicial pode ser assim:
3.1. Executivos e líderes empresariais seniores: (⩾4 horas de treinamento)
META – Permita que os executivos entendam o que a IA pode fazer pela sua empresa, comecem a desenvolver a estratégia de IA, tomem decisões de alocação de recursos apropriadas e colaborem sem problemas com uma equipe de IA que está apoiando projetos de IA valiosos. CURRÍCULO:
- Compreensão empresarial básica da IA, incluindo tecnologia básica, dados e o que a IA pode e não pode fazer.
- Compreensão do impacto da IA na estratégia corporativa.
- Estudos de caso sobre aplicativos de IA para setores adjacentes ou para o seu setor específico.
3.2. Líderes de divisões que realizam projetos de IA: (⩾12 horas de treinamento)
META – Os líderes de divisão devem ser capazes de definir a direção dos projetos de IA, alocar recursos, monitorar e acompanhar o progresso e fazer as correções necessárias para garantir a entrega bem-sucedida do projeto. CURRÍCULO:
- Compreensão empresarial básica da IA, incluindo tecnologia básica, dados e o que a IA pode e não pode fazer.
- Conhecimento técnico básico de IA, incluindo as principais classes de algoritmos e seus requisitos.
- Compreensão básica do fluxo de trabalho e processos de projetos de IA, funções e responsabilidades em equipes de IA e gerenciamento de equipe de IA.
3.3. Estagiários de engenharia de IA: (⩾100 horas de treinamento)
META – Engenheiros de IA recém-treinados devem ser capazes de coletar dados, treinar modelos de IA e entregar projetos de IA específicos. CURRÍCULO:
- Profundo conhecimento técnico de machine learning e deep learning; compreensão básica de outras ferramentas de IA.
- Compreensão das ferramentas disponíveis (código aberto e de terceiros) para construir sistemas de IA e dados.
- Capacidade de implementar o fluxo de trabalho e os processos das equipes de IA.
- Além disso: educação contínua para manter-se atualizado com a evolução da tecnologia de IA
4. Desenvolva uma estratégia de IA
Uma estratégia de IA orientará sua empresa para a criação de valor e, ao mesmo tempo, construirá fossos defensáveis. Assim que as equipes começarem a ver o sucesso dos projetos iniciais de IA e formar uma compreensão mais profunda da IA, você poderá identificar os lugares onde a IA pode criar mais valor e concentrar recursos nessas áreas.
Alguns executivos pensarão que desenvolver uma estratégia de IA deve ser o primeiro passo. A experiência diz que a maioria das empresas não será capaz de desenvolver uma estratégia de IA ponderada até que tenha alguma experiência básica com IA, que o progresso parcial nas etapas 1 a 3 fornecerá.
A maneira como você constrói fossos defensáveis também está evoluindo com a IA. Aqui estão algumas abordagens a serem consideradas:
Crie vários ativos de IA difíceis que estejam amplamente alinhados com uma estratégia coerente: a IA está permitindo que as empresas construam vantagens competitivas exclusivas de novas maneiras. Os escritos seminais de Michael Porter sobre estratégia de negócios mostram que uma maneira de iniciar um negócio defensável é construir vários ativos difíceis que estão amplamente alinhados com uma estratégia coerente. Assim, torna-se difícil para um concorrente replicar todos esses ativos simultaneamente.
Aproveite a IA para criar uma vantagem específica para o seu setor: em vez de tentar competir “geralmente” em IA com empresas líderes de tecnologia, como o Google, recomendo tornar-se uma empresa líder de IA em seu setor, onde o desenvolvimento de recursos exclusivos de IA permitirá você para obter uma vantagem competitiva. Como a IA afeta a estratégia da sua empresa será específica do setor e da situação.
Desenhe estratégias alinhadas com o ciclo de feedback positivo do “círculo virtuoso da IA”: em muitos setores, veremos o acúmulo de dados levando a um negócio defensável:
Por exemplo, os principais mecanismos de pesquisa da Web, como Google, Baidu, Bing e Yandex, têm um enorme ativo de dados mostrando quais links um usuário clica após diferentes consultas de pesquisa. Esses dados ajudam as empresas a criar um produto de mecanismo de pesquisa mais preciso (A), o que, por sua vez, as ajuda a adquirir mais usuários (B), o que, por sua vez, resulta em ter ainda mais dados de usuários (C). Esse ciclo de feedback positivo é difícil aos concorrentes invadirem.
Os dados são um ativo fundamental para os sistemas de IA. Assim, muitas grandes empresas de IA também têm uma estratégia de dados sofisticada. Os principais elementos da sua estratégia de dados podem incluir:
Aquisição de dados estratégicos: sistemas úteis de IA podem ser construídos com qualquer ponto de 100 dados (“small data”) a 100.000.000 pontos de dados (“big data”), e ter mais dados é melhor. As equipes de IA estão usando estratégias muito sofisticadas e de vários anos para adquirir dados, e estratégias específicas de aquisição de dados são específicas do setor e da situação. Por exemplo, o Google e o Baidu têm vários produtos gratuitos que não monetizam, mas permitem que eles adquiram dados que podem ser monetizados em outros lugares.
Armazéns de dados unificados: se você tiver 50 bancos de dados diferentes sob o controle de 50 VPs ou divisões diferentes, será quase impossível para um engenheiro ou software de IA obter acesso a esses dados e “conectar os pontos”. Em vez disso, considere centralizar seus dados em um ou no máximo um pequeno número de data warehouses.
Reconhecer quais dados são valiosos e quais não são: não é verdade que ter muitos terabytes de dados automaticamente significa que uma equipe de IA poderá criar valor a partir desses dados. Esperar que uma equipe de IA crie valor magicamente a partir de um grande conjunto de dados é uma fórmula que vem com uma grande chance de falha. tragicamente alguns CEOs investirem demais na coleta de dados de baixo valor, ou mesmo adquirem uma empresa para seus dados apenas para perceber que os muitos terabytes de dados da empresa-alvo não são úteis. Evite esse erro trazendo uma equipe de IA no início do processo de aquisição de dados e permita que eles o ajudem a priorizar quais tipos de dados adquirir e salvar.
Criar efeito de rede e vantagens de plataforma: Finalmente, a IA também pode ser usada para construir fossos mais tradicionais. Por exemplo, plataformas com efeitos de rede são negócios altamente defensáveis. Eles geralmente têm uma dinâmica natural de “o vencedor leva tudo” que força as empresas a crescer rápido ou morrer. Se a IA permitir que você adquira usuários mais rapidamente do que seus concorrentes, ela poderá ser aproveitada para construir um fosso que seja defensável por meio da dinâmica da plataforma. Mais amplamente, você pode usar a IA como um componente-chave da estratégia de baixo custo, alto valor ou outras estratégias de negócios.
5. Desenvolva comunicações internas e externas
A IA afetará significativamente seus negócios. Na medida em que afeta seus principais interessados, você deve executar um programa de comunicação para garantir o alinhamento. Aqui está o que você deve considerar para cada público:
Relações com investidores: As principais empresas de IA, como Google e Baidu, agora são empresas muito mais valiosas, em parte por causa de seus recursos de IA e do impacto que a IA tem em seus resultados. Explicar uma tese clara de criação de valor para a IA em sua empresa, descrever seus crescentes recursos de IA e ter uma estratégia de IA ponderada ajudará os investidores a valorizar sua empresa adequadamente.
Relações Governamentais: Empresas em setores altamente regulamentados (carros autônomos, assistência médica) enfrentam desafios únicos para manter a conformidade. Desenvolver uma história de IA convincente que explique o valor e os benefícios que seu projeto pode trazer para um setor ou sociedade é um passo importante na construção de confiança e boa vontade. Isso deve ser combinado com comunicação direta e diálogo contínuo com os reguladores à medida que você lança seu projeto.
Educação do usuário: a IA provavelmente trará benefícios significativos para seus clientes, portanto, certifique-se de que as mensagens apropriadas de marketing e roteiro de produto sejam divulgadas.
Talento/Recrutamento: Devido à escassez de talentos de IA, uma marca forte do empregador terá um efeito significativo na sua capacidade de atrair e reter esse talento. Os engenheiros de IA querem trabalhar em projetos interessantes e significativos. Um esforço modesto para mostrar seus sucessos iniciais pode percorrer um longo caminho.
Comunicações Internas: Como a IA hoje ainda é pouco compreendida e a Inteligência Artificial Geral especificamente foi exagerada, há medo, incerteza e dúvida. Muitos funcionários também estão preocupados com o fato de seus empregos serem automatizados pela IA, embora isso varie muito de acordo com a cultura (por exemplo, esse medo aparece muito mais nos EUA do que no Japão). Comunicações internas claras, tanto para explicar a IA quanto para abordar as preocupações desses funcionários, reduzirão qualquer relutância interna em adotar a IA.
Uma nota histórica, importante para o seu sucesso
Compreender como a internet transformou as indústrias é útil para navegar na ascensão da IA. Há um erro que muitas empresas cometeram ao navegar na ascensão da internet que espero que você evite ao navegar na ascensão da IA.
Aprendemos na era da internet que: Shopping + Site ≠ empresa de internet
Mesmo que um shopping center construísse um site e vendesse coisas nele, isso por si só não transforma o shopping em uma verdadeira empresa de internet. O que define uma verdadeira empresa de internet é: você organizou sua empresa para fazer as coisas que a internet permite que você faça muito bem?
Por exemplo, empresas de internet se envolvem em testes A/B abrangentes, nos quais lançam rotineiramente duas versões de um site e mede qual funciona melhor. Uma empresa de internet pode até ter centenas de experimentos rodando ao mesmo tempo; isso é muito difícil de fazer com um shopping físico. As empresas de Internet também podem publicar um novo visual ou produto toda semana e, assim, aprender muito mais rápido do que um shopping center que atualiza seu design apenas uma vez por trimestre. As empresas de Internet têm descrições de cargos exclusivas para funções como gerente de produto e engenheiro de software, e essas funções têm fluxos de trabalho e processos exclusivos para o modo como trabalham em conjunto.
O aprendizado profundo, uma das áreas de IA que mais cresce, está mostrando paralelos com a ascensão da internet.
Hoje sabemos que: Qualquer empresa típica + tecnologia Deep Learning ≠ empresa de IA
Para que sua empresa se torne ótima em IA, você terá que organizá-la para fazer as coisas que a IA permite que você faça muito bem.
Para que sua empresa seja ótima em IA, você deve ter:
- Recursos para executar sistematicamente vários projetos valiosos de IA: as empresas de IA têm tecnologia e talento terceirizados e/ou internos para executar sistematicamente vários projetos de IA que agregam valor direto ao negócio.
- Compreensão suficiente da IA: Deve haver uma compreensão geral da IA, com processos apropriados para identificar e selecionar sistematicamente projetos valiosos de IA para trabalhar.
- Direção estratégica: a estratégia da empresa está amplamente alinhada para ter sucesso em um futuro alimentado por IA.
Considerações finais
Um programa de transformação de IA pode levar de 2 a 3 anos, mas você deve esperar resultados concretos iniciais dentro de 6 a 12 meses. Ao investir em uma transformação de IA, você ficará à frente de seus concorrentes e aproveitará os recursos de IA para avançar significativamente em sua empresa.
Transformar sua empresa em uma empresa de IA é desafiador, mas viável com o apoio de bons parceiros.
Conte comigo em seus projetos. Sobre mim: aqui. Contato: aqui.
Um abraço, @neigrando
Referência
Este texto partiu do conteúdo traduzido e adaptado com base no post original em inglês “AI Transformation Playbook – How to lead your company into the AI era”-driven Strategy in Data and AI”, de Andrew Ng.
Artigos relacionados
Curtir isso:
Curtir Carregando...