Inteligência Artificial na Estratégia de Marketing

Sou pesquisador do Núcleo Decide pela FEA-USP / CNPq, onde desde 2020 estamos pesquisando sobre o uso da inteligência artificial na tomada de decisões das organizações, e professor da disciplina Fundamentos da Inteligência Artificial na pós-graduação da ESPM. Nesse sentido, os temas sobre tomada de decisão, estratégia, inovação, marketing e inteligência artificial fazem parte do meu escopo de pesquisa, estudo, ensino e consultoria.

Ao pesquisar sobre estes temas, encontrei o artigo “Artificial Intelligence (AI) in Strategic Marketing Decision-Making: A research agenda”, de Merlin Stone e outros autores, vide referência, o qual traduzi, resumi e adaptei, como segue. Acredito que o texto pode ser útil a todo gestor de marketing que queira ser mais orientado a dados em suas decisões e deseje utilizar a IA como aliada na busca por agilidade e resultados melhores em suas atividades.

Introdução

Este artigo enfoca a evolução da prática de marketing e, em particular, a possível aplicação da inteligência artificial (IA) à tomada de decisões estratégicas de marketing.

A fronteira entre humanos e computadores na tomada de decisões está mudando. Hoje, a IA é cada vez mais implantada em operações de marketing, por exemplo, identificação de riscos, gerenciamento de resposta do centro de contato, bem como em publicidade de marketing, incluindo análise e direcionamento de clientes, design e seleção de publicidade para corresponder aos clientes-alvo, precificação para maximizar o rendimento de clientes individuais. Num futuro próximo, espera-se que a IA seja empregada na tomada de decisões estratégicas, por exemplo, quais modelos de negócios usar, quais estratégias seguir, quais mercados segmentar, quais produtos comercializar, quais canais de comunicação e distribuição usar, quais estratégias de preços e posicionamento competitivo seguir etc. No entanto, o uso da IA ​​na estratégia de marketing não tem sido muito discutido no domínio público. Contatos com a indústria indicam que algumas empresas avançaram muito nessa área, mas esses projetos são mantidos em sigilo e tratados como fonte de vantagem competitiva.

Ressalta-se, neste ponto, que o foco não está na substituição da tomada de decisão humana nas decisões estratégicas, mas na criação de um mecanismo de tomada de decisão de maior qualidade, usando IA, para que os profissionais de marketing tenham acesso a informações mais rápidas, completas e opções mais elaboradas para escolher e a criação do quadro teórico associado.

Hoje a IA é vista principalmente como um suporte às grandes decisões de negócios e não como um tomador de decisão – exceto em alguns casos operacionais, mas atribuem isso ao fato de que a IA atualmente constituída é relativamente fraca, em comparação com o que será a forte IA do futuro.

Este artigo tem como perspectiva negócios business-to-consumer (B2C) e das empresas que vendem aos consumidores através de outros negócios (conhecidos como B2B2C).

Os benefícios

Espera-se que os benefícios da aplicação da IA ​​à tomada de decisões estratégicas de marketing incluam:

  • Maior velocidade de tomada de decisão, especialmente em resposta à disponibilidade de novos dados ou ameaças competitivas emergentes, permitindo que as empresas capturem os benefícios de posições de mercado mais fortes mais cedo.
  • Identificação de dados perdidos.
  • Aumento da racionalidade, particularmente por meio da remoção ou redução do viés cognitivo por parte dos tomadores de decisão.
  • Criação de uma base comum para a tomada de decisões.
  • Incorporação do aprendizado da experiência.
  • Maior qualidade na gestão dos projetos de marketing.

Exemplos de aplicação

Existem maneiras pelas quais a IA pode ser usada em diferentes áreas de tomada de decisão e planejamento de marketing. Nem sempre há uma separação clara entre estratégia de marketing e estratégia de negócios. Tampouco há uma separação clara entre a estratégia geral de marketing e a estratégia para os diferentes elementos do mix de marketing. Por exemplo, as decisões sobre os canais de marketing têm aspectos estratégicos, bem como aspectos táticos, principalmente porque as abordagens digitais alteram o equilíbrio entre os canais e os papéis que os diferentes canais desempenham. Essas decisões podem afetar todos os aspectos do marketing.

Segue uma amostra de possíveis mudanças que o digital fez em diferentes atividades de marketing, pois a digitalização do marketing é uma pré-condição para que os dados sejam disponibilizados para a IA, ​​e exemplos de possíveis implantações da IA. São considerados a IA no Marketing Estratégico, a IA no Mix de Marketing e a IA na Gestão do Marketing, com diversos subtópicos.

IA no Marketing Estratégico

Estratégia geral – mercados-alvo, mix de marketing para cada um, objetivos, KPIs, metas etc.

Permite que as informações para a tomada de decisões sejam reunidas e automatizadas rapidamente, e os resultados de diferentes estratégias sejam analisados mais rapidamente para que a estratégia possa ser revisada em uma abordagem de experimentação com testes e aprendizado.

Exemplos:

  • Avaliando rapidamente diferentes resultados com base em estratégias alternativas.
  • Auxiliando na tomada de decisões rápidas para escolher aquelas com maior probabilidade de produzir melhores resultados.

Modelo de negócio de gestão de clientes

Refere-se a quais clientes a empresa deseja adquirir, reter, desenvolver (up-sell e cross-sell) e alienar, com quais receitas e custos resultantes, para atingir seus objetivos estratégicos, em vez de atender às metas de determinados elementos do mix de marketing isoladamente.

Exemplos:

  • Usando tecnologia como aprendizado de máquina para ajudar a “alcançar” públicos semelhantes.
  • Quantificando e explorando as consequências de diferentes modelos de negócios.

Marca geral e proposta

Dependendo se a empresa está envolvida em muitos tipos diferentes de produtos e mercados, pode se aplicar a toda a empresa ou a partes dela, mas em um nível mais alto do que produtos e serviços individuais – com diferentes abordagens de marca adotadas em diferentes canais.

Exemplo:

  • Identificando resultados de investimentos de marca, recomendando investimentos futuros e estratégia de canal.

Desenvolvimento de novas fontes de receita

Refere-se ao desenvolvimento de receita usando uma forma ou a introdução de um novo produto ou serviço que é, de alguma forma, diferente das formas existentes – pode envolver qualquer ou todos os elementos do mix de marketing e diferentes mercados.

Exemplo:

  • Identificando fluxos de receita para a base de clientes existente e para novos mercados para acelerar o lançamento.

Gestão de ecossistemas, parcerias, terceirização e redefinição da cadeia de valor

Como empresas e parceiros (fornecedores e fabricantes), que trabalham em estreita colaboração, são organizados para garantir que a estratégia geral de marketing (e negócios) da empresa seja desenvolvida e entregue, e como os ganhos de trabalhar juntos são compartilhados.

Exemplo:

  • Identificando as partes mais produtivas do ecossistema e as lacunas no desenvolvimento do ecossistema.

Estratégia competitiva – quem são os principais concorrentes, visando a vitória e a defesa

Como os concorrentes diretos e indiretos são identificados, suas estratégias descobertas e compreendidas e como a empresa cria estratégias para evitar, sempre que possível, os efeitos negativos da concorrência.

Exemplo:

  • Identificando sinais fracos de concorrência iminente.
  • Identificando pontos fracos na estratégia própria e da concorrência.

Gestão de recursos

Permite que os custos e benefícios gerais de diferentes estratégias sejam medidos e analisados mais rapidamente para ajustar os recursos – nos períodos de pico de demanda.

Exemplo:

  • Analisando os dados para identificar riscos, recompensas e resultados/ possíveis cenários de planejamento.

IA no Mix de Marketing

Marca

O lócus das marcas de muitas empresas mudou do mundo real para o virtual, com muitas marcas de muitas outras sendo fortemente afetadas pelo que se fala sobre elas no mundo virtual.

Exemplos:

  • Acompanhando a mudança da imagem da marca usando evidências da web, principalmente das mídias sociais.
  • Encontrando evidências das causas da mudança de marca e perda de participação de mercado.

Produtos

A entrada do cliente no design do produto (design colaborativo) pode ser obtida muito mais rapidamente.

Os clientes podem projetar seus próprios produtos com mais facilidade. Os projetos podem ser testados e revisados mais rapidamente, enquanto os problemas podem ser identificados e corrigidos com mais rapidez e facilidade usando uma variedade de canais digitais e ferramentas de colaboração.

Exemplos:

  • Sintetizando a entrada de clientes.
  • Simulando resultados de novos designs de produtos de formulações.

Proposição

A proposta pode ser mais sintonizada com os mercados-alvo e o envolvimento dos clientes com diferentes propostas podem ser entendidos mais rapidamente, com alterações iterativas feitas e testadas para obter mais feedback.

Exemplo:

  • Identificando quais proposições funcionam melhor por meio de feedback e testes do cliente.

Preço

Os preços podem ser adaptados mais facilmente para diferentes clientes. O gerenciamento de rendimento pode ser aplicado em novas áreas.

Exemplo:

  • Redefinindo as estratégias de preços com base nos resultados de diferentes abordagens de gerenciamento de rendimento.

Publicidade

A publicidade em site/mobile/digital está gradualmente usurpando a publicidade em mídia física convencional, permitindo maior rastreabilidade e melhor avaliação do retorno do investimento. Isso está levando a uma indefinição da distinção entre publicidade digital e outros métodos de comunicação de marketing. A automação aplicada à publicidade por meio de abordagens programáticas e semelhantes está aumentando muito a oportunidade de aplicar abordagens de IA.

Exemplo:

  • Escolha/design de textos, imagens e vídeos para atender segmentos de mercado e indivíduos em diferentes canais e plataformas.

Marketing direto

O marketing direto se expandiu para fora da mídia convencional de correio e telefone para incluir praticamente todas as comunicações de marketing, especialmente digital e CRM, de modo que de alguma forma aparece em todo o marketing, seja iniciado pela empresa ou seus clientes. As indicações, sempre valiosas, se transformaram em recomendações para muitas empresas.

Exemplo:

  • Escolhendo qual forma/combinações de tipos de contato/canais/conteúdo que é apropriado para diferentes mercados-alvo e indivíduos.

Venda pessoal

A venda pessoal agora tem um suporte de informações muito mais forte, enquanto sistemas aprimorados de gerenciamento de vendas, às vezes integrados a sistemas de gerenciamento de resposta, permitem direcionamento, prospecção e gerenciamento de clientes e prospects muito mais eficazes.

Exemplos:

  • Fornecendo resposta personalizada aos indivíduos.
  • Analisando os resultados.
  • Recomendando diferentes maneiras de personalizar.

Relações públicas

O boca a boca eletrônico está substituindo a exposição na mídia convencional, não apenas por meio de redes sociais, mas por todos os aspectos do diálogo na web e em dispositivos móveis – e muitas vezes se desenvolvendo rapidamente e em tempo real. Em alguns setores, as avaliações online tornaram-se críticas para determinar se um produto será vendido, enquanto os influenciadores sociais se tornaram uma parte muito importante do marketing em alguns setores, como viagens, roupas, cosméticos e automotivo.

Exemplo:

  • Identificando padrões de boca a boca, razões para eles, ações sugeridas e sentimento subjacente.

Promoção de vendas

A eficácia das promoções de vendas pode ser avaliada muito mais rapidamente do que nunca, enquanto os canais online facilitam a distribuição de incentivos de compra como cupons, descontos e outros incentivos.

Exemplos:

  • Identificando quais promoções funcionam melhor e mais rapidamente com quais clientes/segmentos de mercado.
  • Identificando quais ofertas devem ser usadas e quando.

Conteúdo

O aumento do número de canais e a importância dos conteúdos (texto, áudio, imagem, vídeo) na persuasão e influência dos clientes tem vindo a destacar-se, sobretudo pela possibilidade de personalizar todo o tipo de conteúdo para segmentos de mercado e agora clientes individuais, suportado pela capacidade de pesquisar, classificar e analisar todos os tipos de conteúdo. O rápido aumento do conteúdo de vídeo, facilitado por melhorias significativas na largura de banda móvel, com mais vindo com o advento do 5G, é um desafio e uma oportunidade, multiplicado pelo uso de mensagens para comunicar conteúdo. A realidade estendida (virtual e aumentada) está mudando a abordagem do conteúdo, permitindo a combinação de experiências reais e digitais. A narrativa de marcas e produtos está sendo muito mais usada, em parte porque suporta o desenvolvimento de conteúdo muito mais rico que pode ser usado em todos os canais de comunicação. No entanto, uma questão que permanece controversa é até que ponto o uso da IA ​​pode apoiar e incentivar a criatividade e aumentar os retornos dela.

Exemplos:

  • Servindo conteúdo para os clientes e prospects certos no momento certo e analisar os resultados de servi-lo.
  • Personalizando o conteúdo para segmentos e clientes-alvo.

Gestão de clientes (aquisição, retenção, desenvolvimento, atendimento ao cliente, experiência do cliente)

Como o estoque do cliente é construído para produtos específicos ou grupos deles, desde as metas estabelecidas até as técnicas usadas para alcançar os resultados desejados e acompanhar o cumprimento do compromisso e das promessas do cliente após a transação.

Exemplos:

  • Otimizando os níveis de estoque em tempo real e ajudando o cliente a reagir à demanda de diferentes segmentos.
  • Automatizando a interação com o cliente (bots)

Distribuição

A web tornou-se um canal de distribuição muito importante para muitos produtos e serviços baseados em informação, bem como alguns produtos físicos e, em muitos mercados, o canal dominante para comunicação de marketing, de modo que as decisões de distribuição e comunicação ficam intimamente ligadas uma à outra, com os clientes que procuram uma resposta imediata às suas solicitações, ou um método simples para comprar quando estiverem prontos.

Exemplos:

  • Otimizando canais.
  • Identificando canais ausentes.
  • Melhorando os tempos de transação e agilize o atendimento.

IA na Gestão do Marketing

Pessoas

Os profissionais de marketing, vendas e serviços podem ser muito mais bem informados sobre o que precisam saber para vender e comercializar melhor, e os resultados de seu trabalho podem ser obtidos e distribuídos com mais facilidade. Eles também podem se beneficiar profissionalmente com mais treinamento em novas ferramentas de marketing digital e como aplicar a tecnologia pessoalmente.

Exemplos:

  • Identificando quais informações devem ser usadas para apoiar diferentes tipos de decisão.
  • Identificando onde os gerentes não estão usando as informações corretas, não têm acesso às informações corretas ou estão interpretando erroneamente as informações que possuem.
  • Fornecendo ferramentas e estruturas para melhor usar as oportunidades criadas pela nova tecnologia de IA.

Análise de marketing

Usar os enormes volumes de dados agora disponíveis para algumas empresas e clientes cada vez mais impacientes por respostas rápidas visando mensagens de saída e resposta rápida a mensagens de entrada pode ser muito mais preciso e oportuno. O tempo tornou-se extremamente importante para capturar a intenção de compra, pois os clientes podem estar no mercado por um período muito curto, pois fazem suas comparações e chegam a suas conclusões usando as montanhas de conteúdo disponíveis das empresas e de seus concorrentes.

Exemplo:

  • Acelerando a análise e sua aplicação – tanto do ponto de vista interno “reativo” quanto do ponto de vista dos clientes que acessam informações relevantes para uma compra.

Pesquisa de mercado

A pesquisa de mercado está cada vez mais on-line, enquanto a obtenção de informações de feedback iniciado pelo cliente e análise de sentimentos (com as permissões apropriadas) estão fornecendo uma nova fonte de informações aos profissionais de marketing sobre como seus clientes atuais e potenciais pensam, sentem e agem.

Exemplos:

  • Obtendo e analisando de conjuntos de dados maiores.
  • Analisando resultados de pesquisas, especialmente quando combinados em diferentes estudos.

Segmentação de mercado

Devido à sua crescente complexidade, a segmentação de mercado está se tornando cada vez mais automatizada. Os resultados de mudanças recentes nas metas e implantação de diferentes elementos do mix de marketing para produzir taxas de resposta e vendas adequadas.

Exemplo:

  • A IA pode ajudar com uma segmentação mais precisa, inclusive permitindo mudanças em tempo real na estratégia.

Dados e sistemas

Os processos de marketing podem ser migrados para os sistemas, cada vez mais rodando na “nuvem” e permitindo que o marketing e a equipe colaborem e melhorem sua eficácia e velocidade de processos como fluxo de trabalho e gerenciamento de projetos. Os sistemas permitem um acesso muito melhor aos dados necessários para a tomada de decisões, desde sobre clientes individuais até decisões estratégicas e, em seguida, para medição, revisão e cálculo do retorno do investimento. A personalização e o marketing baseado em localização deixaram de se tornar palavras de ordem e passaram a ser negócios de rotina para as equipes de marketing mais eficazes. No entanto, eles representam riscos de privacidade significativos, pois os requisitos de proteção de dados se tornaram um foco central para o gerenciamento de marketing. Enquanto isso, os requisitos de integração de dados de diferentes fontes para maximizar a eficácia do marketing, particularmente a integração de suas plataformas de gerenciamento de dados (sistemas centralizados para coletar e analisar grandes conjuntos de dados de fontes diferentes) com suas plataformas de demanda (sistemas que permitem aos compradores de publicidade digital coordenarem suas atividades, incluindo licitações) são essenciais para acompanhar os concorrentes.

Exemplos:

  • Identificando oportunidades para melhorar os retornos da implantação de sistemas.
  • Identificando novas maneiras de acelerar o fluxo de trabalho e uma colaboração para auxiliar no desenvolvimento da velocidade de lançamento no mercado e maior conformidade.

Gerenciamento de recursos de marketing

A automação de marketing permite que os processos de marketing sejam gerenciados de forma mais eficaz, pois o retorno do investimento para diferentes despesas de marketing é calculado e previsto com mais precisão do que os canais tradicionais.

A otimização do gerenciamento de recursos é fundamental com os negócios sendo mais esticados do que nunca por um mercado hipercompetitivo.

Gerenciamento de conteúdo

Gerenciar o crescente volume e variedade de conteúdo requer a manutenção de vários sistemas, e personalizar constantemente o conteúdo para as necessidades e casos de uso de situações específicas é particularmente importante, dada a crescente possibilidade de expor o cliente errado ao conteúdo errado.

A correspondência de conteúdo com o cliente final certo (no momento certo) usa significativamente mais recursos de marketing, portanto, o retorno do custo adicional de melhoria do gerenciamento de conteúdo deve ser medido e aplicado.

Exemplos:

  • Otimizando para clientes individuais.
  • Disponibilizando ferramenta que agiliza a entrega de conteúdos e melhora a sua otimização.

Gerenciando pessoas de marketing

Isso está relacionado a como os profissionais de marketing são recrutados, treinados, desenvolvidos, direcionados e avaliados como profissionais de marketing. Isso é particularmente importante em um cenário de tecnologia digital em rápida mudança, que exige um conjunto de habilidades totalmente novo dos canais e disciplinas tradicionais de marketing.

Exemplo:

  • Identificando os profissionais de marketing mais produtivos e auxiliando na resolução de problemas associados à tomada de decisão de outros.

Modelo operacional de marketing

Com a digitalização, o modelo operacional de marketing está mudando. Um dos melhores exemplos disso é o surgimento da publicidade programática, que está ajudando as empresas que usam a tecnologia a ir além do gerenciamento manual da publicidade para usar a tecnologia para alcançar o nirvana de atribuir o valor correto às diferentes intervenções publicitárias, dada a posse e uso das ferramentas de análise certas para alcançar o público-alvo certo automaticamente.

Exemplo:

  • Otimizando o funcionamento eficiente do modelo, incluindo o uso de aprendizado de máquina para tomar decisões em tempo real sobre públicos e níveis de investimento apropriados.

Finanças de marketing

É essencial identificar de onde vêm a receita e o lucro crucial ao operar em um complexo negócio multicanal e multiproduto/serviço. Dada a redução das barreiras à entrada online, a crescente velocidade de mudança no mercado, para garantir que um negócio está agindo de forma sustentável é preciso apurar muito mais rapidamente. Novas medidas estão sendo usadas, não apenas as financeiras clássicas, que levam em conta, abordagens de portfólio e tração digital.

Exemplo:

  • Identificando os retornos com precisão com mais rapidez e imparcialidade do que a análise humana.

Considerações Finais

O uso da IA em Marketing aos poucos tem evoluído de operacional para tático e estratégico. Gestores de marketing precisam acompanhar esta evolução, assim como a evolução do marketing tradicional com o digital, e a orientação de suas decisões por dados.

Sobre mim: aqui. Contato: aqui.

Um abraço, @neigrando

Referência

  • Este post trata-se de uma tradução reduzida e adaptada do artigo acadêmico original (em inglês): “Artificial Intelligence (AI) in Strategic Marketing Decision-Making: A research agenda”, por Merlin Stone, Eleni Aravopoulou, Yuksel Ekinci, e outros autores – de 2020.

Artigos relacionados

Data Driven Marketing

Recentemente tive o privilégio de participar como um dos autores do livro “Trends MKT na Era Digital: o Futuro do Marketing“, com o capítulo 4 sobre Data Driven Marketing, organizado por Martha Grabriel, Rafael Kiso e Luciano Kalil. E ainda este mês aceitei o convite da minha amiga Martha para ministrar uma palestra sobre este tema no evento Digitalks Executive que aconteceu presencialmente no auditório da Unibes Cultural em São Paulo e que foi simultaneamente transmitido online, aberto para todos os interessados. Neste post quero fornecer alguns insigths introdutórios esperando contribuir com todos os que estudam ou praticam marketing digital em agências e em empresas.

Introdução

Em 2021 dos quase 20 bilhões foram investidos em publicidade no Brasil pelas grandes agências, 33,5% foram em mídias digitais. Percentual maior que os 26,7% de 2020. Ou seja, o marketing digital cresceu consideravelmente desde seu início de atuação, quando muitas destas agências quase não acreditavam no seu poder.

A evolução do marketing digital

Esta linha do tempo que segue, mostra claramente a evolução do marketing digital e tecnologias relacionadas, ele acompanhou a mudança do comportamento do consumidor e sua relação com as mídias e as marcas. A realidade é que a concorrência aumentou, o consumidor ficou mais exigente e o marketing precisou evoluir para atendê-lo melhor em sua jornada e experiência de consumo.

A evolução dos sistemas de marketing

A partir de 2003 (nos estados unidos e poucos anos depois por outros países, que incluem o Brasil), o marketing digital começou com o envio de e-mails e SMS em lote.

A partir de 2007 surgiram os canais digitais, ou seja, a Web, seguido das Mídias sociais e Mobile, cujo foco do marketing era a personalização.

Em 2010 iniciou uma visão unificada mapeando a jornada do cliente com foco numa análise preditiva, ou seja, mais orientada a dados.

A partir de 2013 a experiência do cliente ganhou relevância, com uma visão omnicanal, buscando maior interação com o cliente.

E de 2016 para cá a orientação a dados, junto com a inteligência artificial possibilitou um engajamento em tempo real, com chatbots, notificações via Apps e outros recursos que permitiram um marketing mais ágil e iterativo, com melhor relação causa-efeito, ROI mais preciso, menos desperdício de chumbo nas campanhas, e como consequência clientes mais satisfeitos e engajados.

O diagrama que segue mostra esta evolução.

Mas afinal o que é data driven marketing?

Data Driven Marketing (DDM), ou Marketing orientado a dados, consiste no uso de estratégias e táticas de marketing, obtidos a partir de insights baseados em grande volume e/ou variedade de dados de consumidores e do mercado, coletados a partir de diversas origens e formatos e analisados apropriadamente via algoritmos adequados.

O desafio de alta complexidade do data driven aos profissionais de marketing tem o potencial incrível de: alcançar o usuário certo, na hora certa, com a mensagem certa, no lugar certo e motivá-lo para uma ação adequada.

Além disso, o DDM fornece ao gestor melhor atribuição de causa-efeito dos resultados das campanhas publicitárias.

A distância entre o desejo e a capacidade de ter um DDM

Uma pesquisa recente da Leap (KPMG & Distrito) aponta que 98% dos executivos brasileiros consideram o uso de dados uma ferramenta essencial para o setor de marketing de crescimento.

Porém vemos que ainda há uma lacuna entre desejo e capacidade, pois ao consultar nas estatísticas de registro.br o número de domínios Internet registrados até 21 de junho de 2022 no Brasil, obtivemos 4.965.192 (aproximadamente 5 milhões). Por outro lado, ao consultar o número de sites que tem o google analytics instalado e operante nesta mesma data, obtivemos apenas 847.681 sites (menos de 1 milhão), ou seja, temos apenas aproximadamente 17% das organizações brasileiras com domínio registrado usando o Google Analytics atualmente. Usou-se o Google Analytis para comparação por saber-se que se trata de uma ferramenta básica, utilizada pela maioria dos profissionais de marketing digital que acompanham as estatísticas (métricas) de acesso e uso dos sites que acompanham. Comparações similares poderiam ser feitas com ferramentas focadas em análises de perfis de mídia social e mobile das empresas.

Além disso, temos uma diferença crescente no tempo entre a coleta de dados e o entendimento sobre eles nas organizações. Nos dois gráficos da imagem que segue, podemos ver claramente esta diferenças. A esquerda vemos uma grande lacuna, cada vez maior na linha do tempo em empresas típicas, e a direita vemos que organizações orientadas a dados e IA, com maior entendimento e por consequência maior e melhor uso dos dados em suas decisões organizacionais.

Marketing tradicional versus orientado a dados

Nas empresas tradicionais os poucos critérios de segmentação usados, geralmente demográficos, são selecionados pelos gestores com base em opinião e dados superficiais.

Em DDM, os critérios de segmentação são muitos, derivados de inteligência baseada em dados, podendo ser qualquer comportamento, característica ou interação, desde que indique um segmento com semelhanças comportamentais específicas e seja preditivo nos resultados. A classificação e priorização dos clientes ocorre em tempo real.

As diferenças podem ser melhor vistas nas linhas e colunas da tabela que segue.

Benefícios e desafios do DDM

Entre os benefícios destaca-se:

  1. Personalização (melhores campanhas e CX)
  2. Clareza (mais e melhores dados e entendimento sobre os clientes)
  3. Experiência do cliente
  4. Experiência multicanal (facilitada pela integração dos dados dos canais)
  5. Integração com vendas e TI (colaboração)
  6. Desenvolvimento de produto (entendendo melhor o cliente e suas necessidades)
  7. Facilitação de testes A/B

E como desafios destaca-se:

  1. Equipe (mentalidade e habilidades data driven, treinamento no uso de plataformas e ferramentas, conexão com cientistas e engenheiros de dados, …)
  2. Compromisso (de todo o pessoal de Marketing em todos os níveis)
  3. Integração (dados integrados de alta qualidade)
  4. Disponibilidade de Dados (nem sempre facilmente acessíveis, principalmente em B2B)
  5. Ferramentas e Plataformas adequadas

Aplicações de IA de uso no marketing

Dados são fundamentais para aplicações que se utilizam de algoritmos de aprendizado de máquina (machine learning), aprendizado profundo (deep learning) e outros facilitadores da inteligência artificial (IA) treinados para gerar modelos que são testados. Estes modelos permitem que as aplicações processem novos dados realizando classificações, agrupamentos, predições, etc. Segue uma lista das aplicações mais comuns de DDM que se utilizam da IA no marketing:

  • Chatbots para desenvolvimento de leads, suporte ao cliente e venda cruzada ou upselling.
  • Análise e encaminhamento de chamadas de entrada (inbound call).
  • Comentários do cliente e análise, classificação e resposta de e-mail.
  • Automação de campanha de marketing (incluindo e-mails, geração de página de destino e segmentação de clientes).
  • Análise do mix de marketing.
  • Merchandising de produtos on-line.
  • Precificação
  • Recomendações de produtos ou serviços e ofertas altamente personalizadas.
  • Compra de anúncios digitais programáticos.
  • Pontuação de leads de vendas.
  • Planejamento, compra e execução em mídia social.
  • Análise de sentimento na mídia social.
  • Posicionamento de anúncio de televisão (parcial).
  • Geração de narrativa de análise da web.
  • Operação e otimização do site (incluindo testes A/B e outros).

Considerações finais

O marketing tradicional evoluiu para incluir o digital e ampliar os canais para atender os usuários, clientes e consumidores de forma mais interativa e personalizada. O marketing digital evoluiu para orientado a dados, incluindo as estratégias, técnicas, plataformas e ferramentas, além é claro de pessoas habilitadas para fazer o trabalho com mais agilidade, precisão e métricas. Isso permitiu aos gestores de marketing gerenciarem melhor e explicarem melhor os resultados mais bem sucedidos obtidos em suas campanhas publicitarias. Para conseguir isso é preciso criar uma cultura corporativa e mentalidade de gestão orientada a dados.

Autor

Nei Grando – diretor executivo da STRATEGIUS, é consultor e palestrante em estratégia, inovação, transformação digital, organizações exponenciais e cidades inteligentes; pesquisador em inteligência artificial; conselheiro de empresas e mentor de startups. Autor do blog neigrando.com – Mestre em ciências pela FEA-USP, graduado em TI pela UEM, com MBA em Administração pela FGV e cursos de extensão em Estratégia e Gestão do Conhecimento (FGV) e Inovação e Redes Sociais (ESPM). Teve duas empresas de software e soluções de TI, onde conduziu o desenvolvimento de portais e plataformas digitais de negócios, internet-banking, home broker, CRM, GED, GC e outros. É o organizador e um dos autores do livro “Empreendedorismo inovador”, e autor em outros três. Como professor, ministrou as disciplinas de “Strategic Thinking” e “Planejamento Estratégico” em curso MBA da FIAP, “Intelligence Driven Decision” e “Fundamentos de Inteligência Artificial” em curso MBA da ESPM e como prof. convidado, no curso “Laboratório de Startups” do CIC-ESPM. .

Referências

  • Capítulo 4 do livro “Trends MKT na Era Digital: o Futuro do Marketing“.
  • Estudos do autor para a disciplina Fundamentos de Inteligência Artificial da ESPM.
  • Estudos do autor para a palestra ministrada no evento Digitalks Executive.

Artigos relacionados

Planejando a Inteligência Artificial em Marketing

As empresas devem adotar decisões mais automatizadas sempre que possível. É aqui que se encontram os maiores retornos do marketing de IA.”

Mais um post sobre Inteligência Artificial (IA) aplicada aos negócios, desta vez com foco em Marketing, fornecendo um framework que facilita o entendimento do planejamento aos gestores de marketing e outros interessados em IA.

Os diretores de marketing estão adotando cada vez mais a Inteligência Artificial:

  • Uma análise de 2018 da McKinsey de mais de 400 casos de uso avançados mostrou que o marketing era o domínio em que a IA contribuiria com o maior valor.
  • Uma pesquisa de agosto de 2019 da American Marketing Association revelou que a implementação de IA havia aumentado 27% no ano e meio anterior.
  • E uma pesquisa global da Deloitte em 2020 com os primeiros a adotar a IA mostrou que três dos cinco principais objetivos da IA eram orientados para o mercado: aprimorar produtos e serviços existentes, criar novos produtos e serviços e aprimorar os relacionamentos com os clientes.

Muitas empresas agora usam IA para lidar com tarefas restritas, como:

  • publicação de anúncios digitais (também conhecido como “compra programática”);
  • auxiliar em tarefas amplas, como aumentar a precisão das previsões (pense nas previsões de vendas); e
  • aumentar os esforços humanos em tarefas estruturadas, como atendimento ao cliente.

As empresas também empregam IA em todas as fases da jornada do cliente

Quando os clientes em potencial estão na fase de “consideração” e pesquisando um produto, a IA direcionará os anúncios para eles e pode ajudar a orientá-los na pesquisa.

Vê-se isso acontecer no varejista online de móveis Wayfair, que usa IA para determinar quais clientes têm maior probabilidade de ser persuadidos e, com base em seus históricos de navegação, escolhe produtos para mostrá-los.

E bots habilitados para IA de empresas como a Vee24 podem ajudar os profissionais de marketing a entender as necessidades dos clientes, aumentar seu envolvimento em uma pesquisa, empurrá-los na direção desejada, como uma página da web específica e, se necessário, conectá-los a um humano agente de vendas por chat, telefone, vídeo ou mesmo “co-navegação” – permitindo que um agente ajude o cliente a navegar em uma tela compartilhada.

A IA pode agilizar o processo de vendas usando dados extremamente detalhados sobre os indivíduos, incluindo dados de geolocalização em tempo real, para criar ofertas de produtos ou serviços altamente personalizadas. Mais tarde na jornada, a IA auxilia no upsell e na venda cruzada e pode reduzir a probabilidade de os clientes abandonarem seus carrinhos de compras digitais. Por exemplo, depois que um cliente preenche um carrinho, os bots de IA podem fornecer um depoimento motivador para ajudar a fechar a venda, como “Excelente compra! James de Vermont comprou o mesmo colchão”. Essas iniciativas podem aumentar as taxas de conversão cinco vezes ou mais.

Após a venda, os agentes de serviço habilitados para IA de empresas como Amelia (anteriormente IPsoft) e Interactions estão disponíveis 24 horas por dia, 7 dias por semana para fazer a triagem das solicitações dos clientes – e são capazes de lidar com volumes flutuantes de solicitações de serviço melhores do que os agentes humanos. Eles podem lidar com questões simples sobre, digamos, tempo de entrega ou agendamento de uma consulta e podem escalar questões mais complexas para um agente humano.

Em alguns casos, a IA auxilia os representantes humanos analisando o tom dos clientes e sugerindo respostas com diferenciais, orientando os agentes sobre a melhor forma de satisfazer as necessidades dos clientes ou sugerindo a intervenção de um supervisor.

O Framework

A IA de marketing pode ser categorizada de acordo com duas dimensões: nível de inteligência e se é autônomo ou parte de uma plataforma mais ampla. Algumas tecnologias, como chatbots ou motores de recomendação, podem cair em qualquer uma das categorias; é como eles são implementados em um aplicativo específico que determina sua classificação.

Vamos examinar os dois tipos de inteligência primeiro

Automação de tarefas. Esses aplicativos executam tarefas repetitivas e estruturadas que requerem níveis relativamente baixos de inteligência.

Eles são projetados para seguir um conjunto de regras ou executar uma determinada sequência de operações com base em uma determinada entrada, mas eles não podem lidar com problemas complexos, como solicitações de clientes diferenciadas. Um exemplo seria um sistema que envia automaticamente um e-mail de boas-vindas a cada novo cliente. Chatbots mais simples, como aqueles disponíveis através do Facebook Messenger e outros provedores de mídia social, também se enquadram esta categoria. Eles podem fornecer alguma ajuda aos clientes durante as interações básicas, levando os clientes a uma determinada árvore de decisão, mas eles não conseguem discernir a intenção dos clientes, oferecer respostas personalizadas ou aprender com as interações ao longo do tempo.

Aprendizado de máquina. Esses algoritmos são treinados usando grandes quantidades de dados para fazer previsões e decisões relativamente complexas, gerando modelos. Esses modelos podem reconhecer imagens, decifrar textos, segmentar clientes e antecipar como os clientes responderão a várias iniciativas, como promoções. O aprendizado de máquina já impulsiona a compra programática em publicidade online, mecanismos de recomendação de e-commerce e modelos de propensão de vendas em sistemas de gerenciamento de relacionamento com o cliente (CRM). Ele e sua variante mais sofisticada, aprendizado profundo, são as tecnologias mais avançadas em IA e estão rapidamente se tornando ferramentas poderosas de marketing. Dito isso, é importante esclarecer que os aplicativos de aprendizado de máquina existentes ainda executam tarefas restritas e precisam ser treinados com grandes quantidades de dados.

Agora, vamos considerar a IA independente versus a IA integrada

Aplicativos independentes. Esses são mais bem compreendidos como programas de IA claramente demarcados ou isolados. Eles são separados dos canais principais por meio dos quais os clientes aprendem, compram ou obtêm suporte para usar as ofertas de uma empresa ou os canais que os funcionários usam para comercializar, vender ou prestar serviços a essas ofertas. Simplificando, os clientes ou funcionários precisam fazer uma viagem especial além desses canais para usar a IA.

Considere o aplicativo de descoberta de cores criado por Behr, a empresa de tintas. Usando o processamento de linguagem natural do IBM Watson e os recursos do Tone Analyzer (que detectam emoções no texto), a O aplicativo oferece várias recomendações de cores de pintura personalizadas da Behr que são baseadas no humor que os consumidores desejam para seu espaço. Os clientes usam o aplicativo para selecionar duas ou três cores para o cômodo que pretendem pintar. A venda real de tinta é então executada fora do aplicativo, embora permita uma conexão para fazer o pedido da Home Depot.

Aplicativos integrados. Incorporado em sistemas existentes, estas aplicações IA geralmente são menos visíveis aos clientes, profissionais de marketing e vendedores que os utilizam do que os aplicativos independentes. Por exemplo, o aprendizado de máquina que toma decisões em fração de segundo sobre quais anúncios digitais oferecer aos usuários é integrado a plataformas que lidam com todo o processo de compra e colocação de anúncios.

O aprendizado de máquina integrado da Netflix oferece recomendações de vídeo aos clientes há mais de uma década; suas seleções simplesmente aparecem no menu de ofertas que os usuários veem quando acessam o site. Se o mecanismo de recomendação fosse independente, eles precisariam acessar um aplicativo dedicado e solicitar sugestões.

Os fabricantes de sistemas de CRM incorporam cada vez mais recursos de aprendizado de máquina em seus produtos. Na Salesforce, o pacote Sales Cloud Einstein tem vários recursos, incluindo um sistema de pontuação de leads baseado em IA que classifica automaticamente os leads de clientes B2B pela probabilidade de compra.

Fornecedores como a Cogito, que vende IA que treina vendedores de call center, também integram seus aplicativos ao sistema CRM da Salesforce.

Combinando os dois tipos de inteligência

Combinar os dois tipos de inteligência e dois tipos de estrutura produz os quatro quadrantes do framework: aplicativos autônomos de aprendizado de máquina, aplicativos integrados de aprendizado de máquina, aplicativos autônomos de automação de tarefas e aplicativos integrados de automação de tarefas.

Entender em quais quadrantes os aplicativos se enquadram pode ajudar os profissionais de marketing a planejar e sequenciar a introdução de novos usos.

Uma abordagem escalonada

Acredita-se que os profissionais de marketing verão o maior valor ao buscar aplicativos integrados de aprendizado de máquina, embora sistemas simples baseados em regras e de automação de tarefas possam aprimorar processos altamente estruturados e oferecer potencial razoável para retornos comerciais.

Observe, no entanto, que hoje em dia a automação de tarefas está cada vez mais combinada com aprendizado de máquina – para extrair dados-chave de mensagens, tomar decisões mais complexas e personalizar comunicações – um híbrido que abrange quadrantes.

Os aplicativos independentes continuam a ter seu lugar onde a integração é difícil ou impossível, embora haja limites para seus benefícios. Portanto, recomenda-se os profissionais de marketing a, com o tempo, integrar a IA aos sistemas de marketing atuais, em vez de continuar com os aplicativos independentes. E, de fato, muitas empresas estão caminhando nessa direção geral; na pesquisa Deloitte de 2020, 74% dos executivos globais de IA concordaram que “a IA será integrada a todos os aplicativos corporativos dentro de três anos”.

Começando

Para empresas com experiência limitada em IA, uma boa maneira de começar é construindo ou comprando aplicativos simples baseados em regras.

Muitas empresas buscam uma abordagem “rastejar-caminhar-correr”, começando com um aplicativo independente de automação de tarefas não voltado para o cliente, como aquele que orienta os agentes de serviço humano que se envolvem com os clientes.

Depois que as empresas adquirem habilidades básicas de IA e uma abundância de dados de mercado e clientes, elas podem começar a mudar da automação de tarefas para o aprendizado de máquina. Um bom exemplo do último é a IA de seleção de roupas da Stitch Fix, que ajuda seus estilistas a selecionar ofertas para os clientes e se baseia em suas preferências de estilo autorrelatadas, os itens que mantêm e devolvem, e os comentários que fizeram.

Esses modelos se tornaram ainda mais eficazes quando a empresa começou a pedir aos clientes que escolhessem entre as fotos do Style Shuffle, criando uma fonte valiosa de novos dados.

Novas fontes de dados – como transações internas, fornecedores externos e até aquisições em potencial – são algo que os profissionais de marketing devem procurar constantemente, uma vez que a maioria dos aplicativos de IA, especialmente o aprendizado de máquina, exige grandes quantidades de dados de alta qualidade. Considere o modelo de precificação baseado em aprendizado de máquina que a empresa de fretamento de jato XO usou para aumentar seu EBITDA em 5%: A chave era acessar fontes externas para dados sobre o fornecimento de jatos particulares e fatores que afetam a demanda, como grandes eventos, a macroeconomia, a atividade sazonal e o clima. Os dados que o XO usa estão disponíveis publicamente, mas é uma boa ideia também buscar fontes proprietárias sempre que possível, porque os modelos que usam dados públicos podem ser copiados pelos concorrentes.

À medida que as empresas se tornam mais sofisticadas no uso da IA ​​de marketing, muitas automatizam totalmente certos tipos de decisões, tirando totalmente os humanos do circuito. Com decisões repetitivas e de alta velocidade, como as exigidas para a compra de anúncios programáticos (em que os anúncios digitais são veiculados quase instantaneamente aos usuários), essa abordagem é essencial.

Em outros domínios, a IA só pode apresentar recomendações a uma pessoa diante de uma escolha – por exemplo, sugerir um filme a um consumidor ou uma estratégia a um executivo de marketing. Tomada de decisão humana é normalmente reservado para as questões mais importantes, como se deve continuar uma campanha ou aprovar um anúncio de TV caro.

As empresas devem tomar decisões mais automatizadas sempre que possível. Acredita-se que é aqui que os maiores retornos da IA ​​de marketing serão encontrados.

Desafios e riscos

A implementação até mesmo dos aplicativos de IA mais simples pode apresentar dificuldades.

A IA de automação de tarefas autônoma, apesar de sua sofisticação técnica inferior, ainda pode ser difícil de configurar para fluxos de trabalho específicos e exige que as empresas adquiram habilidades de IA adequadas. Trazendo qualquer tipo de IA em um fluxo de trabalho exige integração cuidadosa de tarefas humanas e de máquina para que a IA aumente as habilidades das pessoas e não seja implantada de maneiras que criem problemas. Por exemplo, enquanto muitas organizações usam chatbots baseados em regras para automatizar o atendimento ao cliente, bots menos capazes podem irritar os clientes. Pode ser melhor ter esses bots ajudando agentes humanos ou conselheiros em vez de interagir com os clientes.

À medida que as empresas adotam aplicativos mais sofisticados e integrados, surgem outras considerações. Incorporar IA em plataformas de terceiros, em particular, pode ser complicado. Um caso em questão é oferecido pelo Olay Skin Advisor da Procter & Gamble, que usa aprendizado profundo para analisar selfies que os clientes tiraram, avaliar sua idade e tipo de pele e recomendar produtos apropriados. Ele está integrado a uma plataforma de e-commerce e fidelidade, Olay.com, e melhorou as taxas de conversão, taxas de rejeição e tamanhos médios de cesta em algumas geografias.

No entanto, tem sido mais difícil integrá-lo com lojas de varejo e Amazon, terceiros que respondem por uma alta porcentagem das vendas de Olay. O Skin Advisor não está disponível no extenso site da loja de Olay na Amazon, dificultando a capacidade da marca de oferecer uma experiência de cliente assistida por IA integrada.

Finalmente, as empresas devem manter os interesses dos clientes em mente. Quanto mais inteligentes e integrados os aplicativos de IA, mais preocupações os clientes podem ter sobre privacidade, segurança e propriedade de dados. Os clientes podem ficar nervosos com os aplicativos que capturam e compartilham dados de localização sem seu conhecimento ou sobre alto-falantes inteligentes que podem estar espionando. Em geral, os consumidores mostraram disposição (até mesmo ânsia) de trocar alguns dados pessoais e privacidade em troca do valor que aplicativos inovadores podem oferecer.

As preocupações com aplicativos de IA como Alexa parecem ser diminuídas pela apreciação de seus benefícios. Portanto, a chave para os profissionais de marketing, à medida que expandem a inteligência e o alcance de sua IA, é garantir que seus controles de privacidade e segurança sejam transparentes, que os clientes tenham algo a dizer sobre como seus dados são coletados e usados ​​e que obtenham valor justo da empresa em troca. Para garantir essas proteções e manter a confiança dos clientes, os CMOs devem estabelecer conselhos de revisão de ética e privacidade – com especialistas em marketing e jurídicos – para examinar projetos de IA, especialmente aqueles que envolvem dados de clientes ou algoritmos que podem ser tendenciosos, como pontuação de crédito.

Considerações finais

Enquanto marketing, IA é uma grande promessa, pede-se aos CMOs que sejam realistas sobre suas capacidades atuais. Apesar do hype, a IA ainda pode realizar apenas tarefas específicas, não executar uma função ou processo de marketing inteiro. No entanto, já está oferecendo benefícios substanciais aos profissionais de marketing – e de fato é essencial em algumas atividades de marketing – e seus recursos estão crescendo rapidamente.

Acredita-se que a IA acabará transformando o marketing, mas é uma jornada que levará um bom tempo. A função de marketing e as organizações que a suportam, TI em particular, precisarão prestar atenção a longo prazo para construir recursos de IA e abordar quaisquer riscos potenciais. Pede-se aos profissionais de marketing que comecem a desenvolver uma estratégia hoje para aproveitar as vantagens da funcionalidade atual da IA ​​e seu provável futuro.

Planejar o uso da IA é desafiador, mas viável com o apoio de bons parceiros.

Conte comigo em seus projetos. Sobre mim: aqui. Contato: aqui.

Um abraço, @neigrando

Referência

Este texto partiu do conteúdo traduzido e adaptado com base no post original em inglês, da Harvard Business Review (HBR) “How to Design an AI Marketing Strategy”, de Thomas H. Davenport, Abhijit Guha e Dhruv Grewal (2021)

Artigos relacionados